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Abstact : 
Lecturers of the Bell experiment always challenge the public to show a better classical function than the so called
triangle. The non existence of functions behaving in the way predicted by quantum mechanics is a major
condition in the Bell reasonment. We show with simple maths that such functions exist, even in very optimistic lab
conditions never really reached by any known fundamental experiment. Starting from the distibutions, we draw
the curves for many parameters settings. Moreover, a classical analysis predicts new behaviors of the outcome
that might be checked in a lab. Possible other functions exist. Therefore, surprisingly, the Bell analysis in its
current version, fails to decide between the Copenhagen and the Einsteinian interpretations of quantum
mechanics.
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This article, isolated from other considerations, concerns mainly a proof method. It is intended for all those who
are familiar will the Bell experiment and particularly with the curves comparison.

Thought experiments inventors imagine always a perfect sub world, but labs experiments face the problem of
the devices sensibilities. In some cases, a presumed perfect thought experiment cannot be transposed in a lab
while many try. A small error rate makes di�cult to compare the opposed predictions. I shall try to show that
this is the case of the Bell experiment here. Henceforth, a lab Bell experiment needs to ful�ll more conditions to
be conclusive. 

1. Lab Bell Inequalities Background Express

 
The Bell theoretical background, well explained in many books [2], is assumed to be well known.

 
From a lab point of view, the thought experiment [1] compares the curves of the classical and the quantum
correlations. 

 

The di�erences of the angles with the polarizers are the arguments.

The grey curve  represents the classical correlations and the magenta curve y=cos²(x) the quantum
correlations. 
 
 
Then, an experiment is conducted, the detections are summed, the correlations counted, the statistics
computed with what was detected, the curves drawn and it is observed that it is as expected by QM. In most
cases, even in an experiment of importance [4], very few angles are measured, ie the blue dots only, because it

y = 1 −
2|x|
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was economic at the time the experiment was conceived. By chance, A. Aspect published complete curves [3]
and indeed, they are very similar to cos².

It must be noticed that in reports, the Bell correlations are never averaged on the number of emitted particles,
but only on the total of detections, at the best case.

To qualify the additional variables, we will prefer the factual “shared” instead of the subjective “hidden”.

Classical correlations and any computational local method assumed being unable to reproduce such measures, the
conclusion is that the quantum entanglement is proven.

2. Remarks

2.1 E�ciency

No detector is perfect, particularly in the QM formalism. Lenses, polarizers and devices �lter a part of the
signals. Therefore, the alternative to + is not necessarily – , it may be also undetected. 
If the �ltering function changes the distibution, the resulting sample will be unfair. Undetections and unfair
sampling open the problem of �nding better than this grey classical curve.

Best detectors allow 85 to 90% of e�ciency. High quality lenses and devices �lter from 10 to 50%. The
alternative solution must work with a low level of errors, ie less than 20%. We are talking of real total
e�ciencies, meaning the ratio detected over emitted. It is the only de�nition for the detection issue. 

2.2 The challenge

Lecturers often challenge the question, paraphrasing A. Aspect when saying “There is the Bell classical curve,
let me know if someone has better”. It is reasonable to accept because lab conditions allow a non negligible
level of undetections. A nice challenge would be to �nd a complete cos² curve and not only an expression �tting
the 4 or 6 measures needed to establish the Bell inequality with a low undetection rate, lower than the one
o�ered by the best technologies. 

3. One e�cient alternative

3.1 Arm distribution

Trigonometric functions are sometimes surprising.

I found this distribution of the polarizer answer, a generalization of the Malus law with undetections, which
may result of a walk in a crystal. There are many similar distributions and new ones to �nd.

The arguments are an e�ective angle x and an other variable h. h is around 0 inside a radius . Three classical
states +, – and 0 for “undetected”, which have respectively the probability distributions functions f, g and z
depending on x and h. k is an intermediate expression. m and n are free small integers or reals depending on
the model of decay or lessening detection. See below in the curves the optimal values for n and m found by
trial.
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With n=1 and m=0 , the distribution becomes the Malus law.

3.2 Correlations

When applying the distribution to 2 polarizers, each one uses only its own local angle x unknown from y and
shares the other variable h with the other.

x must be dynamic by construction of the Bell theorem. To work in the solution, h must be dynamic too. 
Angles are from  to  and the shared variable h is evenly distributed around zero in a radius  from  to .

 seems interesting.

Let’s compute the correlations of 2 polarizers sharing at each trial the variable h with random x and y, their
respective angles. Let’s de�ne  , the argument of the correlation function p.

3.3 Correlations approximation

It is di�cult to show analytically what will be the correlation curve of which we have the intuition. The
approximative computable simpli�cations found for particular values of the parameters n and m take dozens of
lines. But there are serious hopes that the curves converge to cos².

It is easiest to start from the distributions, to set m,n and  at di�erent values, loop on the parameters by step
of i.e. one degree, step , compute the correlations and draw the curves.
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where the sums steps  

4. Computation by a Monte-Carlo simulation

4.1 Algorithm

We choose a minimal Monte-Carlo method and apply it only for the primary distribution described above, ie the
2 angles and the shared variables being in loops.

* Set m , n and 

* Loop on all possible integers in degrees values of x or get random values 

* Loop on … y or get random y 

* Loop on … h or get random values of h 

– Get the answers of x and y with a heavy loop or a quick Monte-Carlo method from the above
distribution

– count the correlations

To execute 2 to 8 times, so the e�ect of the Monte-Carlo is well balanced. And then outputs the result as
curves and summations. We prefer the loop method to prove the similarity with cos² and the Monte Carlo
method for any other application.

4.2 Curves

Foremost, it was an initially impossible challenge and it seems won! At �rst sight, the curves are as expected
and the idea of looking was not in vain!

Each polarizer is related to a rate of detections, also called arm e�ciency ( AE). The general e�ciency or cross
e�ciency is the pairs rate of the 2 polarizers, in general the product of the 2 arms e�ciencies.

With this �rst simulated curves comparison, the e�ciency by arm is 84.9%, of the same order as the best
detectors currently in the market. In the lab, the e�ciency objectively reported in the greatest experiments [4]
is lower. When the e�ciency is summed on the raw data, before the lab experiment data �ltering, the rates are
1 to 3 orders lower. That the lab �lters the data in a fundamental experiment is beyond the scope of this article.

Observe that the green and magenta curves are almost superposed with di�erent values of the m and n crystal
parameters. 
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The functions vary smoothly with the change of the n and m parameters. m can be real but n must be an
integer. 



 
These 4 curves are the most e�cient respectively for n=8,7,6 and 5.

the parameters setting n=6 and m=6.5 gives the most similar to the cos² curve. 



It seems that n=5 and m=5.25 is the more similar to the lab correlation curve, with less �tting at extreme values. 



We can choose the m and n parameters to get more detections at the price of more di�erences between the
curves. 
When m becomes high , the e�ciency raises until 99% and the curve is this time similar to the classical
reference. Speci�c labs experiments, exploring the variations of n and m, may question the physicality of the
distribution. 

 

Is the curve below acceptable as quantum like ? probably yes. A 90% e�ciency detector doesn’t yet exist. 



4.3 Observations and physicality

4.3.1 Limits

The shared variable cannot be static and must be distributed in a radius  from  to  around

zero. However, the distribution by arm is constant with a  radius while it is near of the Malus law
with . The latter is retained as a constant in this paper. But it is possible to get another value

based on lab arm measures showing a detection rate depending on the angle.

More possible h values are used, better are the correlations.

n must be a positive integer while m may be a positive real.

4.3.2 Similarity

The original analyse predicts the exact correlation curve when the errors and undetections rates are null. But,
pratically, there are errors and, as it is shown, a classical algorithm can render the same results in the �nal
statistics. Adjusting the parameters to get a 100% detection gives the original Bell classical correlation curve,
which is a particular case of the cross distribution.

Numerical searches of optimal m and n were done on a computers network. The best �tting is around 68%. Is it
rather  with a perfect curve superposition? The best cross e�ciency with a curve yet very similar to cos² is

75%. Fitting and e�ciency are in balance. 
We found better formula based on hypotetic walks of a photon in a crystal with simple exit rule. They need
more computation capacity, then they cannot be checked within a browser on the internet as this markovian
distribution. 
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4.3.3 systematic check, if it was the clock and the phase

It is interesting in a classical Bell experiment to do some quick checks to discard trivial classical results. 
The shared variables sequence may come from a clock. In optical settings, one can question the physicality of h
in the phase shared by 2 coherent photons by checking a statistics of coherent photons not explicitely
entangled. Then, 2 �ows of almost coherent photons coming from 2 sources must correlate in cos² if the
distribution is physical and the shared variable the phase.

 
Let’s assume that h is no more a shared variable and is replaced by h1 and h2 such h2-h1 = constant.

The MC computation shows now the same corresponding phase in the correlation curve! Above, h1 and h2 have
a constant di�erence of  which is the same as the shift of the correlation function.

Giving a small random di�erence to h2-h1 weaken the e�ciency but the curve is still similar to cos². Then, 2
�ows of mere coherent photons coming from 2 stable sources don’t need to be perfectly adjusted to execute
this experiment.

If it is exactly the phase, a photons sequence from a coherent light might also correlate with itself, by using 2
paths of di�erent lengths.

Unfortunately, these systematic checks will probably be negative. This doesn’t invalidate the computability of
such correlations and the need of a high luminosity to prove any interpretation. 

4.3.4 From where came the classical curve used by Bell?

 
A classical analysis without detections errors shows that correlations behave like in QM but with 50% of noise.
Normally after this step, it seems obvious to evaluate better variants than the naive Malus application, in the
same way it is done for refractions at the quantum level [5], and to invoke intrinsic errors in the measures.
These 2 hypotheses are enough to make the Bell inequality useless in a lab, unless an undreamed resolution
technology arises. 
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5. About a proof of quantum entanglement using the Bell Settings

It is now a fact that, in lab conditions of experimentation, classical possible distributions very similar to cos² exist
and cannot be ignored.

Therefore, to be conclusive an experiment must show properties that a local computation cannot do. It is still
possible with the same setting if the measured curve is similar to cos² with very small di�erences and if the
observed real e�ciency is largely above 75% or wathever high value established by a �ne analysis after the
search and the check of other distributions candidates. It is not yet done. 

6. Conclusion

6.1 Bell theorem

Hence, a new Bell theorem must now include an explicite condition on the raw detection rate to be
experimented in a lab. 

6.2 Classical Pseudo-Entanglement

An interesting point is the production by software of classical pseudo-entangled signals, not yet enough to
encrypt or compute as currently theorized but useful in many other contexts. It leads to other encoding
methods and opens the mind about artifacts. The usual no-GO theorems don’t apply on classical pseudo-
entanglement then it is possible to pseudo-entangle classically any pair of many “polarizers” sharing the same
variables sequence. This can give many ideas, knowing that their data are all random and independent. However,
we can show that this encrypting cannot resist to speci�c algorithms like our A51*. Using physical correlations
which cannot be quantum entangled leads �nally to a too expensive weak-encrypting. 

6.3 Quantum Mechanics and interpretations

We were asked if it was a claim of the invalidity of the quantum entanglement and then of the Copenhagen
interpretation. Yes, it was. Copenhagen interpretation has not yet any experimental fundament. It is still a
speculative assumption which needs to be proven or abandoned.

Each experiment claiming that it is conclusive must be checked again. The e�ciencies of the detectors,
polarizers and optical devices are given by the constructors. A whole detection rate is the product of those of
all components, so it is less than the smallest of them. Pre and post selections leads again to classical. 
It is easy to predict the outcomes of these reanalyses.

6.4 Experiments

The versality of the above distribution and its apparent physicality are intriguing, to say the least. We read
di�erently the article [6] about the “heralded entanglement”, which contains a strong indication of the
relevance of the distribution. We would be glad to participate to an experiment with or without many referees.
It would include the measure of the relation between the quality and the detection rate and check some
possible sources of shared variables, not only the phase.

A Supplemental material

A.1 Other functions

When the photon walk in a crystal is simulated by more Monte-Carlo distributions at the lowest level, the
e�ciency tends to  while the di�erences with cos² become very smaller than the ones seen above. The2
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markovian simpli�cation seems to reduce the noise. However, it produces pseudo-entangled sets quickly and
allows online checks, something impossible else. Large trials of these slow functions had been made in 2013

and produced a lot of data. Another family of distributions tends in the same way to . 
We think that the search of the good distribution cannot be driven by aesthetic, nor by a principle of
minimalization since there are so many. Interpretations must come only after a rigorous experiment. 

A.2 Softwares

The scripts for the deep MC version are written in C++. 
Another version simulates 4 independent agents running their scripts independently, the shared variable
oracle, the 2 polarizers and the �nal stage. When they meet to establish the statistics, they �nd obviously the
same results as if all was computed by the same box… 

A.3 Share

Most softwares and data may be shared or are already public. Get in touch with the author to get other speci�c
links or a help for a speci�c port.

*: we will make it public on demand. 
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